Stress indicators based on airborne thermal imagery for field phenotyping a heterogeneous tree population for response to water constraints
نویسندگان
چکیده
As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil-plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran's Water Deficit Index (WDI = 1-ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s-T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index-Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s-T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping.
منابع مشابه
Multispectral airborne imagery in the field reveals genetic determinisms of morphological and transpiration traits of an apple tree hybrid population in response to water deficit
Genetic studies of response to water deficit in adult trees are limited by low throughput of the usual phenotyping methods in the field. Here, we aimed at overcoming this bottleneck, applying a new methodology using airborne multispectral imagery and in planta measurements to compare a high number of individuals.An apple tree population, grafted on the same rootstock, was submitted to contrasti...
متن کاملUsing High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping
There is a growing need for developing high-throughput tools for crop phenotyping that would increase the rate of genetic improvement. In most cases, the indicators used for this purpose are related with canopy structure (often acquired with RGB cameras and multispectral sensors allowing the calculation of NDVI), but using approaches related with the crop physiology are rare. High-resolution hy...
متن کاملUAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought
Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundame...
متن کاملAssessing canopy PRI for water stress detection with diurnal airborne imagery
A series of diurnal airborne campaigns were conducted over an orchard field to assess the canopy Photochemical Reflectance Index (PRI) as an indicator of water stress. Airborne campaigns over two years were conducted with the Airborne Hyperspectral Scanner (AHS) over an orchard field to investigate changes in PRI, in the Transformed Chlorophyll Absorption in Reflectance Index (TCARI) normalized...
متن کاملAirborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards
In the current scenario of worldwide limited water supplies, conserving water is a major concern in agricultural areas. Characterizing within-orchard spatial heterogeneity in water requirements would assist in improving irrigation water use efficiency and conserve water. The crop water stress index (CWSI) has been successfully used as a crop water status indicator in several fruit tree species....
متن کامل